How Olympics Officials Try to Catch “Motor Doping”

How Olympics Officials Try to Catch “Motor Doping”

A French cycling official confronts a rider suspected of doping, and ends up on the hood of a van making a high-speed getaway. This isn’t a tragicomedy starring Gérard Depardieu, sending up the sport’s well-earned reputation for cheating. This scenario played out in May at the Routes de l’Oise cycling competition near Paris, and the van was believed to contain evidence of a distinctly 21st-century cheat: a hidden electric motor.

Cyclists call it “motor doping.” At the Paris Olympics opening on Friday, officials will be deploying electromagnetic scanners and x-ray imaging to combat it, as cyclists race for gold in and around the French capitol. The officials’ prey can be quite small: Cycling experts say just 20 or 30 watts of extra power is enough to tilt the field and clinch a race.

Motor doping has only been confirmed once in professional cycling, way back in 2016. And the sport’s governing body, the Union Cycliste Internationale (UCI), has since introduced increasingly sophisticated motor detection methods. But illicit motors remain a scourge at high-profile amateur events like the Routes de l’Oise. Some top professionals, past and present, continue to raise an alarm.

“It’s 10 years now that we’re speaking about this…If you want to settle this issue you have to invest.” —Jean-Christophe Péraud, formerly Union Cycliste Internationale

Riders and experts reached by IEEE Spectrum say it’s unlikely that technological doping still exists at the professional level. “I’m confident it’s not happening any more. I think as soon as we began to speak about it, it stopped. Because at a high level it’s too dangerous for a team and an athlete,” says Jean-Christophe Péraud, an Olympic silver medalist who was UCI’s first Manager of Equipment and the Fight against Technological Fraud.

But trust is limited. Cycling is still recovering from the scandals surrounding U.S. Olympian Lance Armstrong, whose extensive use of transfusions and drugs to boost blood oxygen levels fuelled allegations of collusion by UCI officials and threats to boot cycling out of the Olympics.

Many—including Péraud—say more vigilance is needed. The solution may be next-generation detection tech: onboard scanners that provide continuous assurance that human muscle alone is powering the sport’s dramatic sprints and climbs.

How Officials Have Hunted for Motor Doping in Cycling

Rumors of hidden motors first swirled into the mainstream in 2010 after a Swiss cyclist clinched several European events with stunning accelerations. At the time the UCI lacked means of detecting concealed motors, and its technical director promised to “speed up” work on a “quick and efficient way” to do so.

The UCI began with infrared cameras, but they are useless for pre- and post-race checks when a hidden motor is cold. Not until 2015, amidst further motor doping rumors and allegations of UCI inaction, did the organization begin beta testing a better tool: an iPad-based “magnetometric tablet” scanner.

According to the UCI, an adapter plugged into one of these tablet scanners creates an ambient magnetic field. Then, a magnetometer and custom software register disruptions to the field that may indicate the presence of metal or magnets in and around a bike’s carbon-fiber frame.

UCI’s tablets delivered in their debut appearance, at the 2016 Cyclocross World Championships held that year in Belgium. Scans of bikes at the rugged event—a blend of road and mountain biking—flagged a bike bearing the name of local favorite Femke Van den Driessche. Closer inspection revealed a motor and battery lodged within the hollow frame element that angles down from a bike’s saddle to its pedals, and wires connecting the seat tube’s hidden hardware to a push-button switch under the handlebars.

In 2016, a concealed motor was found in a bike bearing Belgian cyclist Femke Van Den Driessche’s name at the world cyclo-cross championships.AFP/Getty Images

Van den Driessche, banned from competition for six years, withdrew from racing while maintaining her innocence. (Giovambattista Lera, the amateur cyclist implicated earlier this year in France, also denies using electric assistance in competition.)

The motor in Van den Driessche’s bike engaged with the bike’s crankshaft and added 200 watts of power. The equipment’s Austrian manufacturer, Vivax Drive, is now defunct. But anyone with cash to spare can experience 200 watts of extra push via a racer equipped by Monaco-based HPS-Bike, such as the HPS-equipped Lotus Type 136 racing bike from U.K. sports car producer Lotus Group, which starts at £15,199 (US $19,715).

HPS founder & CEO Harry Gibbings says they seek to empower weekend riders who don’t want to struggle up steep hills, or who need an extra boost here and there to keep up with the pack. Gibbings says the technology is not available for retrofits, and thus off-limits to would-be cheats. Still, the HPS Watt Assist system shows the outer bounds of what’s possible in discreet high-performance electric assist.

The 30-millimeter-diameter, 300-gram motor, is manufactured by Swiss motor maker Maxon Group, and Gibbings says it uses essentially the same power-dense brushless design that’s propelling NASA’s Perseverance rover on Mars. HPS builds the motor into a bike’s downtube, the frame element angling up from a bike’s crank toward its handlebars.

Notwithstanding persistent media speculation about electric motors built into rear hubs or solid wheels, Gibbings says only a motor placed in a frame’s tubes can add power without jeopardizing the look, feel and performance of a racing bike.

UCI’s New Techniques to Spot Cheating in Cycling

Professional cycling got its most sophisticated detection systems in 2018, after criticism of UCI motor-doping policies helped fuel a change of leadership. Incoming President David Lappartient appointed Péraud to push detection to new levels, and five months later they announced their first x-ray equipment at a press conference in Geneva.

Unlike the tablet scanners, which yield many false positives and require dismantling of suspect bikes, x-ray imaging is definitive. The detector is built into a shielded container and driven to events.

UCI told the cycling press that its x-ray cabinet would “remove any suspicion regarding race results.” And it says it maintains a high level of testing, with close to 1,000 motor doping checks at last year’s Tour de France.

UCI declined to speak with IEEE Spectrum about its motor detection program, including plans for the Paris Olympics. But it appears to have stepped up vigilance. Lappartient recently acknowledged that UCI’s controls are “not 100 percent secure,” and announced a reward for whistleblowers who deliver evidence of motor fraud. In May, UCI once again appointed a motor doping czar—a first since Péraud departed amidst budget cuts in 2020. Among other duties, former U.S. Department of Homeland Security criminal investigator Nicholas Raudenski is tasked with “development of new methods to detect technological fraud.”

Unlike the tablet scanners, x-ray imaging is definitive.

Péraud is convinced that only real-time monitoring of bikes throughout major races can prove that motor fraud is in the past, since big races provide ample opportunities to sneak in an additional bike and thus evade UCI’s current tools.

UCI has already laid the groundwork for such live monitoring, partnering with France’s Alternative Energies and Atomic Energy Commission (Commissariat à l’énergie atomique et aux énergies alternatives, or CEA) to capitalize on the national lab’s deep magnetometry expertise. UCI disclosed some details at its 2018 Geneva press conference, where a CEA official presented their concept: an embedded, high-resolution magnetometer to detect a hidden motor’s electromagnetic signature and wirelessly alert officials via receivers on race support vehicles.

As of June 2018, CEA researchers in Grenoble had identified an appropriate magnetometer and were evaluating the electromagnetic noise that could challenge the system—“from rotating wheels and pedals to passing motorcycles and cars.”

Mounting detectors on every bike would not be cheap, but Péraud says he is convinced that cycling needs it: “It’s 10 years now that we’re speaking about this…If you want to settle this issue you have to invest.”

Please follow and like us:
Pin Share